Useful Links

Will be structured further, till that

PYTHON

  1. http://www.lfd.uci.edu/~gohlke/pythonlibs/
  2. http://www.lfd.uci.edu/~gohlke/

 

 

 

 

Compressive Sensing

https://sites.google.com/site/igorcarron2/compressivesensing2.0
http://perception.csl.illinois.edu/recognition/Home.html
https://sites.google.com/site/igorcarron2/cs
http://www.mathworks.in/company/newsletters/articles/clevescorner-compressed-sensing.html
http://en.wikipedia.org/wiki/Compressed_sensing
Using Math to Turn Lo-Res Datasets Into Hi-Res Samples Wired Magazine article
Compressed Sensing: The Big Picture
A list of different hardware implementation of Compressive Sensing
Compressed Sensing 2.0
Compressed Sensing Makes Every Pixel Count – article in the AMS What’s Happening in the Mathematical Sciences series
Nuit Blanche A blog on Compressive Sensing featuring the most recent information on the subject (preprints, presentations, Q/As)
Online Talks focused on Compressive Sensing
Wiki on sparse reconstruction

pdf
http://people.csail.mit.edu/indyk/princeton.pdf
http://www.cs.huji.ac.il/~yweiss/allerton-final.pdf

Video
“The Fundamentals of Compressive Sensing” Part 1Part 2 and Part 3: video tutorial by Mark Davenport, Georgia Tech. at IEEE Signal Processing Society Online Tutorial Library.

References

  1. ^ M. Davenport, “The Fundamentals of Compressive Sensing”, IEEE Signal Processing Society Online Tutorial Library, April 12, 2013.
  2. Jump up^ CS: Compressed Genotyping, DNA Sudoku – Harnessing high throughput sequencing for multiplexed specimen analysis
  3. Jump up^ Compressive sampling makes medical imaging safer
  4. Jump up^ Candès, Emmanuel J.; Romberg, Justin K.; Tao, Terence (2006). “Stable signal recovery from incomplete and inaccurate measurements”Communications on Pure and Applied Mathematics 59 (8): 1207.doi:10.1002/cpa.20124.
  5. Jump up^ Donoho, D.L. (2006). “Compressed sensing”. IEEE Transactions on Information Theory 52 (4): 1289.doi:10.1109/TIT.2006.871582.
  6. Jump up^ List of L1 regularization ideas from Vivek Goyal, Alyson Fletcher, Sundeep Rangan, The Optimistic Bayesian: Replica Method Analysis of Compressed Sensing
  7. Jump up^ Hayes, Brian (2009). “The Best Bits”. American Scientist97 (4): 276. doi:10.1511/2009.79.276.
  8. Jump up^ Tibshirani, Robert. The Lasso page “Regression shrinkage and selection via the lasso”Journal of the Royal Statistical Society, Series B 58 (1): 267–288.
  9. Jump up^ “Atomic decomposition by basis pursuit”, by Scott Shaobing Chen, David L. Donoho, Michael, A. Saunders. SIAM Journal on Scientific Computing
  10. Jump up^ Candès, Emmanuel J.; Romberg, Justin K.; Tao, Terence (2006). “Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Fourier Information”IEEE Trans. Inf. Theory 52 (8): 489–509.
  11. Jump up^ Candès, E.J., & Wakin, M.B., An Introduction To Compressive Sampling, IEEE Signal Processing Magazine, V.21, March 2008 [1]
  12. Jump up^ Stefan Rolewicz. Metric Linear Spaces.
  13. Jump up^ L1-MAGIC is a collection of MATLAB routines [2]
  14. Jump up^ Compressive Sensing Hardware,http://sites.google.com/site/igorcarron2/compressedsensinghardware
  15. Jump up^ David Schneider (March 2013). “New Camera Chip Captures Only What It Needs”IEEE Spectrum. Retrieved 2013-03-20.
  16. Jump up^ “Compressive Imaging: A New Single-Pixel Camera | Rice DSP”. Dsp.rice.edu. Retrieved 2013-06-04.
  17. Jump up^ The Physics arXiv Blog June 3, 2013 (2013-05-25). “Bell Labs Invents Lensless Camera | MIT Technology Review”. Technologyreview.com. Retrieved 2013-06-04.
  18. Jump up^ Gang Huang; Hong Jiang; Kim Matthews; Paul Wilford (2393). “Lensless Imaging by Compressive Sensing”. IEEE International Conference on Image Processing, ICIP , Paper # 2013arXiv:1305.7181.
  19. Jump up^ “InView web site”. http://www.inviewcorp.com/products.
  20. Jump up^ “InView web site”.http://www.inviewcorp.com/technology/compressive-sensing/.
  21. Jump up^ Engineers Test Highly Accurate Face Recognition
  22. Jump up^ By Jordan EllenbergEmail Author (2010-03-04). “Fill in the Blanks: Using Math to Turn Lo-Res Datasets Into Hi-Res Samples | Wired Magazine”. Wired.com. Retrieved 2013-06-04.
  23. Jump up^ Why Compressed Sensing is NOT a CSI “Enhance” technology … yet !
  24. Jump up^ Surely You Must Be Joking Mr. Screenwriter
===============================================

Engineers Test Highly Accurate Face Recognition http://www.wired.com/science/discoveries/news/2008/03/new_face_recognition

SparseLab http://sparselab.stanford.edu/


=======================================================
Refered from http://www.see.ed.ac.uk/~tblumens/Sparse/Links.html   by Thomas Blumensath

SPARSE PEOPLE

Mike Davies
Ronald A. DeVore
David Donoho
Michael Elad

Mário Figueiredo
Alison Fletcher
Jean-Jacques Fuchs
Anna Gilbert
Vivek Goyal
Rémi Gribonval
Jarvis Haupt
Miachael Lewicki
Michael Lustig
Robert Nowak
Bruno Olshausen
Gabriel Peyré
Mark Plumbley 
Bhaskar D. Rao
Holger Rauhut
Emmanuel Ravelli
Justin Romberg
Terrence Sejnowski
Karin Schnass
Jared Tanner
Terence Tao
Joel Tropp
Yaakov Tsaig
Pierre Vandergheynst
Roman Vershynin
Martin Vetterli
Michael Wakin
Mehrdad Yaghoobi

SOME SPARSE SOFTWARE

WORKSHOPS AND CONFERENCES

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s